Instytut Biotechnologii / Institute of Biotechnology

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 9 of 9
  • Item
    Upregulation of GRP78 is accompanied by decreased antioxidant response and mitophagy promotion in streptozotocin-induced type 1 diabetes in rats - original data
    (Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2024-09-25) Kaniuka, Olena; Deręgowska, Anna; Bandura, Yurii; Sabadashka, Mariya; Chala, Dariya; Kulachkovskyi, Olexandr; Kubis, Hubert; Adamczyk-Grochala, Jagoda; Sybirna, Nataliia
    Endoplasmic reticulum stress, oxidative stress, and mitochondrial dysfunction are interconnected processes involved in the pathogenesis of diabetes mellitus (DM). In the present study, we demonstrate a distinct unfolded protein response (UPR) signaling pathways in two mammalian models of DM: β-TC-6 cell line and streptozotocin induced type 1 diabetes model in rats. However, a feature common to both systems was the upregulation of the GRP78 protein. Moreover, in vivo studies showed the disruption of the antioxidant system and an escalation of mitophagy against the background of a depletion of the level of ATP in pancreatic cells. In conclusion, we suggest that glucotoxic conditions induced GRP78 upregulation, and next cause depletion of the antioxidant pool and disruption of the functioning of antioxidant defense enzymes and in consequence promote mitophagy in pancreatic cells. Therefore, GRP78 may be considered as a potential therapeutic factor in patients with diabetes.
  • Item
    Glucotoxicity is mediated by cytoplasmic distribution of RAP1 in pancreatic β-cells
    (Elsevier, 2024-03-28) Deręgowska, Anna; Tomaszek, Natalia; Cuch, Patrycja; Kozioł, Katarzyna; Kaniuka, Olga; Sabadashka, Mariya; Bandura, Yurii; Sybirna, Nataliia
    Diabetes mellitus (DM) is a group of chronic metabolic disorders characterized by persistent hyperglycemia. In our study, we analyzed the level and location of RAP1 changes in the development of β-cell dysfunction induced by glucotoxicity. We employed three pancreatic β-cell lines, namely INS-1, 1.2B4, and NIT-1, as well as a streptozotocin-induced diabetes rat model. We demonstrate that after high glucose treatment, RAP1 is increased, probably through induction by AKT, allowing RAP1 to shuttle from the nucleus to the cytoplasm and activate NF-κB signaling. Furthermore, non-enzymatic post-translational modifications of RAP1, such as advanced glycation end products and carbonylation may affect the function of RAP1, such as activation of the NF-κB signaling. Taken together, we showed that RAP1 is a new player in the mechanism of glucotoxicity in pancreatic β-cells.
  • Item
    Dataset used in research paper entitled “New Mitochondria-Targeted Fisetin Derivative Compromises Mitophagy and Limits Survival of Drug-Induced Senescent Breast Cancer Cells”
    (Journal of Medicinal Chemistry (ACS), 2024-09-25) Rzeszutek, Iwona; Cybularczyk-Cecotka, Martyna; Deręgowska, Anna; Stec, Paulina; Wnuk, Maciej; Kołodziej, Olga; Kałafut, Joanna; Wawruszak, Anna; Witkowski, Wojciech; Litwinienko, Grzegorz; Lewińska, Anna
    Mitochondria are considered as promising targets for cancer treatment. In the present study, triphenyl phosphonium cationic group-conjugated fisetin (mito-fisetin) was synthesized, and its anticancer activity was investigated in several cellular models of estrogen receptor (ER)-positive breast cancer in vitro and in vivo in proliferating and tamoxifen-promoted senescent states. Mito-fisetin, when used at low micromolar concentrations, stimulated the dissipation of mitochondrial membrane potential and oxidative stress, and affected mitochondrial function, resulting in apoptosis induction in senescent breast cancer cells. Mito-fisetin-mediated cytotoxicity was due to increased levels of phosphorylated AMPK, decreased levels of AKT and HSP90, and impaired mitophagic response, as judged by the analysis of the markers of mitophagosome formation. Senescent breast cancer cells were found to be more sensitive to mito-fisetin treatment than proliferating ones. We postulate that mitochondrial targeting in the case of fisetin may be considered as a promising anticancer and senotherapeutic strategy to eliminate drug-resistant senescent breast cancer cells.
  • Item
    Orginal dataset used to generate the presentation of results in reserach paper entitled "Carbon-Coated Iron Oxide Nanoparticles Promote Reductive Stress-Mediated Cytotoxic Autophagy in Drug-Induced Senescent Breast Cancer Cells"
    (ACS Applied Materials & Interfaces, 2024-03-14) Lewińska, Anna; Radoń, Adrian; Gil, Kacper; Błoniarz, Dominika; Ciuraszkiewicz, Agnieszka; Kubacki, Jerzy; Kądziołka-Gaweł, Mariola; Łukowiec, Dariusz; Gębara, Piotr; Krogul-Sobczak, Agnieszka; Piotrowski, Piotr; Fijałkowska, Oktawia; Wybraniec, Sylwia; Szmatoła, Tomasz; Kolano-Burian, Aleksandra; Wnuk, Maciej
    The surface modification of magnetite nanoparticles (Fe3O4 NPs) is a promising approach to obtaining biocompatible and multifunctional nanoplatforms with numerous applications in biomedicine, for example, to fight cancer. However, little is known about the effects of Fe3O4 NP-associated reductive stress against cancer cells, especially against chemotherapy-induced drug-resistant senescent cancer cells. In the present study, Fe3O4 NPs in situ coated by dextran (Fe3O4@Dex) and glucosamine-based amorphous carbon coating (Fe3O4@aC) with potent reductive activity were characterized and tested against drug-induced senescent breast cancer cells (Hs 578T, BT-20, MDA-MB-468, and MDA-MB-175-VII cells). Fe3O4@aC caused a decrease in reactive oxygen species (ROS) production and an increase in the levels of antioxidant proteins FOXO3a, SOD1, and GPX4 that was accompanied by elevated levels of cell cycle inhibitors (p21, p27, and p57), proinflammatory (NFκB, IL-6, and IL-8) and autophagic (BECN1, LC3B) markers, nucleolar stress, and subsequent apoptotic cell death in etoposide-stimulated senescent breast cancer cells. Fe3O4@aC also promoted reductive stress-mediated cytotoxicity in nonsenescent breast cancer cells. We postulate that Fe3O4 NPs, in addition to their well-established hyperthermia and oxidative stress-mediated anticancer effects, can also be considered, if modified using amorphous carbon coating with reductive activity, as stimulators of reductive stress and cytotoxic effects in both senescent and nonsenescent breast cancer cells with different gene mutation statuses.
  • Item
    Engineering of Ogataea polymorpha strains with ability for high-temperature alcoholic fermentation of cellobiose
    (Oxford University Press, 2024-02-22) Vasylyshyn, Roksolana; Dmytruk, Olena; Sibirny, Andriy; Ruchała, Justyna
    Successful conversion of cellulosic biomass into biofuels requires organisms capable of efficiently utilizing xylose as well as cellodextrins and glucose. Ogataea (Hansenula) polymorpha is the natural xylose-metabolizing organism and is one of the most thermotolerant yeasts known, with a maximum growth temperature above 50°C. Cellobiose-fermenting strains, derivatives of an improved ethanol producer from xylose O. polymorpha BEP/cat8∆, were constructed in this work by the introduction of heterologous genes encoding cellodextrin transporters (CDTs) and intracellular enzymes (β-glucosidase or cellobiose phosphorylase) that hydrolyze cellobiose. For this purpose, the genes gh1-1 of β-glucosidase, CDT-1m and CDT-2m of cellodextrin transporters from Neurospora crassa and the CBP gene coding for cellobiose phosphorylase from Saccharophagus degradans, were successfully expressed in O. polymorpha. Through metabolic engineering and mutagenesis, strains BEP/cat8∆/gh1-1/CDT-1m and BEP/cat8∆/CBP-1/CDT-2mAM were developed, showing improved parameters for high-temperature alcoholic fermentation of cellobiose. The study highlights the need for further optimization to enhance ethanol yields and elucidate cellobiose metabolism intricacies in O. polymorpha yeast. This is the first report of the successful development of stable methylotrophic thermotolerant strains of O. polymorpha capable of coutilizing cellobiose, glucose, and xylose under high-temperature alcoholic fermentation conditions at 45°C.
  • Item
    Surowe dane badawcze do artykułu: Efficient production of bacterial antibiotics aminoriboflavin and roseoflavin in eukaryotic microorganisms, yeasts
    (BMC, Spinger Nature, 2023-07-20) Dmytruk, Kostyantyn; Ruchała, Justyna; Fayura, Liubov; Chrzanowski, Grzegorz; Dmytruk, Olena; Tsyrulnyk, Andriy; Andreieva, Yuliia; Fedorovych, Daria; Motyka, Olena; Mattanovich, Diethard; Marx, Hans; Sibirny, Andriy
    Background Actinomycetes Streptomyces davaonensis and Streptomyces cinnabarinus synthesize a promising broad-spectrum antibiotic roseoflavin, with its synthesis starting from flavin mononucleotide and proceeding through an immediate precursor, aminoriboflavin, that also has antibiotic properties. Roseoflavin accumulation by the natural producers is rather low, whereas aminoriboflavin accumulation is negligible. Yeasts have many advantages as biotechnological producers relative to bacteria, however, no recombinant producers of bacterial antibiotics in yeasts are known. Results Roseoflavin biosynthesis genes have been expressed in riboflavin- or FMN-overproducing yeast strains of Candida famata and Komagataella phaffii. Both these strains accumulated aminoriboflavin, whereas only the latter produced roseoflavin. Aminoriboflavin isolated from the culture liquid of C. famata strain inhibited the growth of Staphylococcus aureus (including MRSA) and Listeria monocytogenes. Maximal accumulation of aminoriboflavin in shake-flasks reached 1.5 mg L− 1 (C. famata), and that of roseoflavin was 5 mg L− 1 (K. phaffii). Accumulation of aminoriboflavin and roseoflavin by K. phaffii recombinant strain in a bioreactor reached 22 and 130 mg L− 1, respectively. For comparison, recombinant strains of the native bacterial producer S. davaonensis accumulated near one-order less of roseoflavin while no recombinant producers of aminoriboflavin was reported at all. Conclusions Yeast recombinant producers of bacterial antibiotics aminoriboflavin and roseoflavin were constructed and evaluated.
  • Item
    Surowe dane badawcze do artykułu "Non-targeting siRNA-mediated responses are associated with apoptosis in chemotherapy-induced senescent skin cancer cells"
    (Chemico-Biological Interactions, 2023-01-05) Betlej, Gabriela; Błoniarz, Dominika; Lewińska, Anna; Wnuk, Maciej
    It is widely accepted that siRNA transfection can promote some off-target effects in the genome; however, little is known about how the cells can respond to the presence of non-viral dsRNA. In the present study, non-targeting control siRNA (NTC-siRNA) was used to evaluate its effects on the activity of pathogen and host-derived nucleic acid-associated signaling pathways such as cGAS-STING, RIG-I, MDA5 and NF-κB in A431 skin cancer cells and BJ fibroblasts. NTC-siRNA treatment promoted cytotoxicity in cancer cells. Furthermore, NTC-siRNA-treated doxorubicin-induced senescent cancer cells were more prone to apoptotic cell death compared to untreated doxorubicin-induced senescent cancer cells. NTC-siRNA stimulated the levels of NF-κB, APOBECs, ALY, LRP8 and phosphorylated STING that suggested the involvement of selected components of nucleic acid sensing pathways in NTC-siRNA-mediated cell death response in skin cancer cells. NTC-siRNA-mediated apoptosis in cancer cells was not associated with IFN-β-based pro-inflammatory response and TRDMT1-based adaptive response. In contrast, in NTC-siRNA-treated fibroblasts, an increase in the levels of RIG-I and IFN-β was not accompanied by affected cell viability. We propose that the use of NTC-siRNA in genetic engineering may provoke a number of unexpected effects that should be carefully monitored. In our experimental settings, NTC-siRNA promoted the elimination of doxorubicin-induced senescent cancer cells that may have implications in skin cancer therapies.
  • Item
    Dane do artykułu "Mutation Status and Glucose Availability Affect the Response to Mitochondria-Targeted Quercetin Derivative in Breast Cancer Cells"
    (Cancers (Basel) MDPI, 2023-11-28) Przybylski, Paweł; Lewińska, Anna; Rzeszutek, Iwona; Błoniarz, Dominika; Moskal, Aleksandra; Betlej, Gabriela; Deręgowska, Anna; Cybularczyk-Cecotka, Martyna ; Szmatoła, Tomasz ; Litwinienko, Grzegorz; Wnuk, Maciej
    Mitochondria, the main cellular power stations, are important modulators of redox-sensitive signaling pathways that may determine cell survival and cell death decisions. As mitochondrial function is essential for tumorigenesis and cancer progression, mitochondrial targeting has been proposed as an attractive anticancer strategy. In the present study, three mitochondria-targeted quercetin derivatives (mitQ3, 5, and 7) were synthesized and tested against six breast cancer cell lines with different mutation and receptor status, namely ER-positive MCF-7, HER2-positive SK-BR-3, and four triple-negative (TNBC) cells, i.e., MDA-MB-231, MDA-MB-468, BT-20, and Hs 578T cells. In general, the mito-quercetin response was modulated by the mutation status. In contrast to unmodified quercetin, 1 µM mitQ7 induced apoptosis in breast cancer cells. In MCF-7 cells, mitQ7-mediated apoptosis was potentiated under glucose-depleted conditions and was accompanied by elevated mitochondrial superoxide production, while AMPK activation-based energetic stress was associated with the alkalization of intracellular milieu and increased levels of NSUN4. Mito-quercetin also eliminated doxorubicin-induced senescent breast cancer cells, which was accompanied by the depolarization of mitochondrial transmembrane potential. Limited glucose availability also sensitized doxorubicin-induced senescent breast cancer cells to apoptosis. In conclusion, we show an increased cytotoxicity of mitochondria-targeted quercetin derivatives compared to unmodified quercetin against breast cancer cells with different mutation status that can be potentiated by modulating glucose availability.
  • Item
    Dane do artykułu "Electrospun fiber-based micro- and nano-system for delivery of high concentrated quercetin to cancer cells"
    (Biomaterials Advances, 2023-10-01) Hudecki, Andrzej; Rzeszutek, Iwona; Lewińska, Anna; Warski, Tymon; Baranowska-Korczyc, Anna; Wojnarowska-Nowak, Renata; Betlej, Gabriela; Deręgowska, Anna; Hudecki, Jacek; Łyko-Morawska, Dorota; Likus, Wirginia; Moskal, Aleksandra; Krzemiński, Piotr; Cieślak, Małgorzata; Kęsik-Brodacka, Małgorzata; Kolano-Burian, Aleksandra; Wnuk, Maciej
    The anticancer potential of quercetin (Q), a plant-derived flavonoid, and underlining molecular mechanisms are widely documented in cellular models in vitro. However, biomedical applications of Q are limited due to its low bioavailability and hydrophilicity. In the present study, the electrospinning approach was used to obtain polylactide (PLA) and PLA and polyethylene oxide (PEO)-based micro- and nanofibers containing Q, namely PLA/Q and PLA/PEO/Q, respectively, in a form of non-woven fabrics. The structure and physico-chemical properties of Q-loaded fibers were characterized by scanning electron and atomic force microscopy (SEM and AFM), X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), goniometry and FTIR and Raman spectroscopy. The anticancer action of PLA/Q and PLA/PEO/Q was revealed using two types of cancer and nine cell lines, namely osteosarcoma (MG-63, U-2 OS, SaOS-2 cells) and breast cancer (SK-BR-3, MCF-7, MDA-MB-231, MDA-MB-468, Hs 578T, and BT-20 cells). The anticancer activity of Q-loaded fibers was more pronounced than the action of free Q. PLA/Q and PLA/PEO/Q promoted cell cycle arrest, oxidative stress and apoptotic cell death that was not overcome by heat shock protein (HSP)-mediated adaptive response. PLA/Q and PLA/PEO/Q were biocompatible and safe, as judged by in vitro testing using normal fibroblasts. We postulate that PLA/Q and PLA/PEO/Q with Q releasing activity can be considered as a novel and more efficient micro- and nano-system to deliver Q and eliminate phenotypically different cancer cells.