Kolegium Nauk Przyrodniczych / College of Natural Sciences
Permanent URI for this community
Browse
Browsing Kolegium Nauk Przyrodniczych / College of Natural Sciences by Author "Ciuraszkiewicz, Agnieszka"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Orginal dataset used to generate the presentation of results in reserach paper entitled "Carbon-Coated Iron Oxide Nanoparticles Promote Reductive Stress-Mediated Cytotoxic Autophagy in Drug-Induced Senescent Breast Cancer Cells"(ACS Applied Materials & Interfaces, 2024-03-14) Lewińska, Anna; Radoń, Adrian; Gil, Kacper; Błoniarz, Dominika; Ciuraszkiewicz, Agnieszka; Kubacki, Jerzy; Kądziołka-Gaweł, Mariola; Łukowiec, Dariusz; Gębara, Piotr; Krogul-Sobczak, Agnieszka; Piotrowski, Piotr; Fijałkowska, Oktawia; Wybraniec, Sylwia; Szmatoła, Tomasz; Kolano-Burian, Aleksandra; Wnuk, MaciejThe surface modification of magnetite nanoparticles (Fe3O4 NPs) is a promising approach to obtaining biocompatible and multifunctional nanoplatforms with numerous applications in biomedicine, for example, to fight cancer. However, little is known about the effects of Fe3O4 NP-associated reductive stress against cancer cells, especially against chemotherapy-induced drug-resistant senescent cancer cells. In the present study, Fe3O4 NPs in situ coated by dextran (Fe3O4@Dex) and glucosamine-based amorphous carbon coating (Fe3O4@aC) with potent reductive activity were characterized and tested against drug-induced senescent breast cancer cells (Hs 578T, BT-20, MDA-MB-468, and MDA-MB-175-VII cells). Fe3O4@aC caused a decrease in reactive oxygen species (ROS) production and an increase in the levels of antioxidant proteins FOXO3a, SOD1, and GPX4 that was accompanied by elevated levels of cell cycle inhibitors (p21, p27, and p57), proinflammatory (NFκB, IL-6, and IL-8) and autophagic (BECN1, LC3B) markers, nucleolar stress, and subsequent apoptotic cell death in etoposide-stimulated senescent breast cancer cells. Fe3O4@aC also promoted reductive stress-mediated cytotoxicity in nonsenescent breast cancer cells. We postulate that Fe3O4 NPs, in addition to their well-established hyperthermia and oxidative stress-mediated anticancer effects, can also be considered, if modified using amorphous carbon coating with reductive activity, as stimulators of reductive stress and cytotoxic effects in both senescent and nonsenescent breast cancer cells with different gene mutation statuses.