Kolegium Nauk Przyrodniczych / College of Natural Sciences
Permanent URI for this community
Browse
Browsing Kolegium Nauk Przyrodniczych / College of Natural Sciences by Subject "apoptosis"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Dataset used in research paper entitled "Evaluation of anticancer activity of urotropine surface modified iron oxide nanoparticles using a panel of forty breast cancer cell lines "(Taylor & Francis, 2025-02-28) Adamczyk-Grochala, Jagoda; Wnuk, Maciej; Oklejewicz, Bernadetta; Klimczak, Katarzyna; Błoniarz, Dominika; Deręgowska, Anna; Rzeszutek, Iwona; Stec, Paulina; Ciuraszkiewicz, Agnieszka; Kądziołka-Gaweł, Mariola; Łukowiec, Dariusz; Piotrowski, Piotr; Litwinienko, Grzegorz; Radoń, Adrian; Lewińska, AnnaUrotropine, an antibacterial agent to treat urinary tract bacterial infections, can be also considered as a repurposed drug with formaldehyde-mediated anticancer activity. Recently, we have synthesized urotropine surface modified iron oxide nanoparticles (URO@Fe3O4 NPs) with improved colloidal stability and limited cytotoxicity against human fibroblasts. In the present study, we have investigated URO@Fe3O4 NP-mediated responses in a panel of forty phenotypically different breast cancer cell lines along with three non-cancerous corresponding cell lines. URO@Fe3O4 NPs promoted oxidative stress and FOXO3a-based antioxidant response in breast cancer cells. Elevated levels of GPX4 and decreased levels of ACSL4 in URO@Fe3O4 NP-treated breast cancer cells protected against ferroptotic cell death. On the contrary, URO@Fe3O4 NPs impaired the activity of PERK, a part of unfolded protein response (UPR), especially when the glucose supply was limited, that was accompanied by genetic instability, and apoptotic and/or necrotic cell death in breast cancer cells. In conclusion, this is the first comprehensive analysis of anticancer effects of URO@Fe3O4 NPs against a panel of forty breast cancer cell lines with different receptor status and in glucose replete and deplete conditions. We suggest that presented results might be helpful for designing new nano-based anti-breast cancer strategies.Item Dataset used in research paper entitled “New Mitochondria-Targeted Fisetin Derivative Compromises Mitophagy and Limits Survival of Drug-Induced Senescent Breast Cancer Cells”(Journal of Medicinal Chemistry (ACS), 2024-09-25) Rzeszutek, Iwona; Cybularczyk-Cecotka, Martyna; Deręgowska, Anna; Stec, Paulina; Wnuk, Maciej; Kołodziej, Olga; Kałafut, Joanna; Wawruszak, Anna; Witkowski, Wojciech; Litwinienko, Grzegorz; Lewińska, AnnaMitochondria are considered as promising targets for cancer treatment. In the present study, triphenyl phosphonium cationic group-conjugated fisetin (mito-fisetin) was synthesized, and its anticancer activity was investigated in several cellular models of estrogen receptor (ER)-positive breast cancer in vitro and in vivo in proliferating and tamoxifen-promoted senescent states. Mito-fisetin, when used at low micromolar concentrations, stimulated the dissipation of mitochondrial membrane potential and oxidative stress, and affected mitochondrial function, resulting in apoptosis induction in senescent breast cancer cells. Mito-fisetin-mediated cytotoxicity was due to increased levels of phosphorylated AMPK, decreased levels of AKT and HSP90, and impaired mitophagic response, as judged by the analysis of the markers of mitophagosome formation. Senescent breast cancer cells were found to be more sensitive to mito-fisetin treatment than proliferating ones. We postulate that mitochondrial targeting in the case of fisetin may be considered as a promising anticancer and senotherapeutic strategy to eliminate drug-resistant senescent breast cancer cells.