Kolegium Nauk Przyrodniczych / College of Natural Sciences
Permanent URI for this community
Browse
Browsing Kolegium Nauk Przyrodniczych / College of Natural Sciences by Author "Dmytruk, Kostyantyn"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Dataset used in research paper entitled: Riboflavin overproduction on lignocellulose hydrolysate by the engineered yeast Candida famata(Oxford Academic, 2024-07-15) Dzanaeva, Ljubov; Wojdyła, Dominik; Fedorovych, Dariya; Ruchała, Justyna; Dmytruk, Kostyantyn; Sibirny, AndriyLignocellulose (dry plant biomass) is an abundant cheap inedible residue of agriculture and wood industry with great potential as a feedstock for biotechnological processes. Lignocellulosic substrates can serve as valuable resources in fermentation processes, allowing the production of a wide array of chemicals, fuels, and food additives. The main obstacle for cost-effective conversion of lignocellulosic hydrolysates to target products is poor metabolism of the major pentoses, xylose and L-arabinose, which are the second and third most abundant sugars of lignocellulose after glucose. We study the oversynthesis of riboflavin in the flavinogenic yeast Candida famata and found that all major lignocellulosic sugars, including xylose and L-arabinose, support robust growth and riboflavin synthesis in the available strains of C. famata. To further increase riboflavin production from xylose and lignocellulose hydrolysate, genes XYL1 and XYL2 coding for xylose reductase and xylitol dehydrogenase were overexpressed. The resulting strains exhibited increased riboflavin production in both shake flasks and bioreactors using diluted hydrolysate, reaching 1.5 g L-1.Item Surowe dane badawcze do artykułu: Efficient production of bacterial antibiotics aminoriboflavin and roseoflavin in eukaryotic microorganisms, yeasts(BMC, Spinger Nature, 2023-07-20) Dmytruk, Kostyantyn; Ruchała, Justyna; Fayura, Liubov; Chrzanowski, Grzegorz; Dmytruk, Olena; Tsyrulnyk, Andriy; Andreieva, Yuliia; Fedorovych, Daria; Motyka, Olena; Mattanovich, Diethard; Marx, Hans; Sibirny, AndriyBackground Actinomycetes Streptomyces davaonensis and Streptomyces cinnabarinus synthesize a promising broad-spectrum antibiotic roseoflavin, with its synthesis starting from flavin mononucleotide and proceeding through an immediate precursor, aminoriboflavin, that also has antibiotic properties. Roseoflavin accumulation by the natural producers is rather low, whereas aminoriboflavin accumulation is negligible. Yeasts have many advantages as biotechnological producers relative to bacteria, however, no recombinant producers of bacterial antibiotics in yeasts are known. Results Roseoflavin biosynthesis genes have been expressed in riboflavin- or FMN-overproducing yeast strains of Candida famata and Komagataella phaffii. Both these strains accumulated aminoriboflavin, whereas only the latter produced roseoflavin. Aminoriboflavin isolated from the culture liquid of C. famata strain inhibited the growth of Staphylococcus aureus (including MRSA) and Listeria monocytogenes. Maximal accumulation of aminoriboflavin in shake-flasks reached 1.5 mg L− 1 (C. famata), and that of roseoflavin was 5 mg L− 1 (K. phaffii). Accumulation of aminoriboflavin and roseoflavin by K. phaffii recombinant strain in a bioreactor reached 22 and 130 mg L− 1, respectively. For comparison, recombinant strains of the native bacterial producer S. davaonensis accumulated near one-order less of roseoflavin while no recombinant producers of aminoriboflavin was reported at all. Conclusions Yeast recombinant producers of bacterial antibiotics aminoriboflavin and roseoflavin were constructed and evaluated.